bge-m3

Model Description

BGE-M3 stands out for its Multi-Functionality (simultaneous dense, sparse, and multi-vector retrieval), Multi-Linguality (100+ languages), and Multi-Granularity (up to 8,192-token documents). It enhances retrieval pipelines by enabling hybrid retrieval (e.g., combining dense embeddings with BM25-like sparse weights) and re-ranking for higher accuracy. The model integrates seamlessly with tools like Vespa and Milvus, and its unified fine-tuning supports diverse retrieval methods. Recent updates include improved MIRACL benchmark performance and multilingual long-document datasets (MLDR).

Description Ends

Recommend Models

gpt-4o-mini-rev

Using reverse engineering to call the model within the official application and convert it into an API.

DeepSeek-R1

Performance on par with OpenAI-o1, Fully open-source model & technical report, Code and models are released under the MIT License: Distill & commercialize freely.

QwQ-32B

QwQ-32B is a 32.5B-parameter reasoning model in the Qwen series, featuring advanced architecture and 131K-token context length, designed to outperform state-of-the-art models like DeepSeek-R1 in complex tasks.